If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+X^2=10^2
We move all terms to the left:
X^2+X^2-(10^2)=0
We add all the numbers together, and all the variables
2X^2-100=0
a = 2; b = 0; c = -100;
Δ = b2-4ac
Δ = 02-4·2·(-100)
Δ = 800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{800}=\sqrt{400*2}=\sqrt{400}*\sqrt{2}=20\sqrt{2}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{2}}{2*2}=\frac{0-20\sqrt{2}}{4} =-\frac{20\sqrt{2}}{4} =-5\sqrt{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{2}}{2*2}=\frac{0+20\sqrt{2}}{4} =\frac{20\sqrt{2}}{4} =5\sqrt{2} $
| 5(2s-1)=8s+1 | | 2(x-8=68 | | 3(x+5)=4x+3 | | -16t^2+34t-18=0 | | (4x+1)(x−8)=0 | | 7x+1=2(2x+1) | | -7x-4+4x=-8+8 | | 5^x+3=125^2x+9 | | y=1.75+0.5 | | 3-s=15-2s | | 8(3x-20=80 | | 7x-6=5” | | 25+9x+17=11x+18 | | 4x+1+70=10x+5 | | {x2-3=0} | | 10x-4+2x=40 | | 10=4q-10 | | -6(2-x=4(2x-3) | | -4q=5 | | 5(2p+4)-1=12 | | 2y-5y=-3 | | 12/x=0.13 | | 5x-8+3x+4=180 | | 5x-5+6x+8=135 | | 2x+15=2x+27 | | 2x+20=24−2x | | 6(s−9)6(s−9)= | | 64+3x-1=9+9x | | 2z/7+7=8 | | 2(u+8)-8u=-14 | | -7v+4(v-3)=-30 | | 5x-12+3x+18=180° |